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An ab initio quantum dynamical study is performed here to examine the complex nuclear motion underlying the
first two photoelectron bands of trifluoroacetonitrile. The highly overlapping structures of the latter are found to
originate from transitions to the five lowest electronic states (viz., X̃2E, Ã2A1, B̃2A2, C̃2A1, and D̃2E) of the
trifluoroacetonitrile radical cation. The Jahn-Teller (JT) instability of the doubly degenerate X̃ and, D̃ and their
pseudo-Jahn-Teller (PJT) interactions with the nondegenerate Ã, B̃, and C̃ electronic states along the degenerate
vibrational modes lead to multiple multidimensional conical intersections and complex nuclear trajectories through
them. It is found that the JT splitting is very weak in the X̃ and relatively stronger in the D̃ state. However, the PJT
couplings play the pivotal role in the detailed shape of the vibronic bands of the radical cation. Ultrafast nonradiative
decay of electronically excited radical cation has been examined. The findings of this paper are compared with the
experimental data and are also discussed in relation to those observed for the methyl cyanide radical cation.

I. Introduction

Understanding the role of excited molecular electronic states
is a distressing problem in contemporary chemical dynamics.
Recent progress in the experimental measurements have invali-
dated the treatment of the electronic and nuclear motion
separately within the well celebrated theoretical framework of
Born-Oppenheimer (BO) approximation.1,2 Complex pattern
of molecular electronic spectra indeed bears the signature of
complex entanglement of these two microscopic motions.3 A
current thrust in the theoretical treatment of chemical dynamics
is to go beyond the BO picture to unravel such complex
entanglement.2,4,5 The Jahn-Teller (JT) active molecular sys-
tems fall in an unique class, in which the electron-nuclear
coupling is inbuilt.6–9 Symmetry-allowed electronic degeneracy
in these systems splits upon distortions along suitable symmetry
reducing nuclear vibrations. As a result, the JT split component
electronic states cross at the equilibrium the geometry of the
undistorted configuration and form conical intersections 2,3,10,11

of potential energy surfaces (PESs). Despite this, symmetry-
allowed conical intersections of degenerate and nondegenerate
electronic states or two nondegenerate electronic states are also
possible.3,9 Occurrence and ubiquity of conical intersections in
molecular systems have proven the important role of electronic
nonadiabatic interactions in modern chemical dynamics.2,4,5 The
trifluoroacetonitrile radical cation (CF3CN+) turned out to be a
very challenging system, in which the electronic nonadiabatic
effects seem to prevail with its highest degree of complexity.
Two of its lowest vibronic bands recorded in photoelectron
spectroscopy experiments12 reveal structures that are attributed
to originate from five (seven when JT effect is considered) low-
lying electronic states of this species.

The equilibrium configuration of the trifluoroacetonitrile
(CF3CN) molecule belongs to the C3V symmetry point group.
Ionization of an electron from each of its five highest occupied
6e, 10a1, 1a2, 9a1, and 5e molecular orbitals (MOs) yields
CF3CN+ in its ground state X̃2E and first four excited electronic

states Ã2A1, B̃2A2, C̃2A1, and D̃2E. The 12 vibrational degrees
of freedom of CF3CN are grouped into 4a1 + 4e irreducible
representations of the C3V symmetry point group. The sym-
metrized direct product of two E representations in this point
group yields

(E)2 ) a1 + e (1)

Similarly, the direct products of EXA1 and EXA2 in the C3V
symmetry point group result

EXA1 ) e EXA2 ) e (2)

These symmetry rules suggest that the degenerate X̃2E and
D̃2E electronic states of CF3CN would undergo JT splitting in
first order when distorted along the degenerate vibrational modes
of e symmetry (note that the symmetry of the electronic and
nuclear degrees of freedom are designated by the upper and
lower case symbols, respectively). From eq 2, it can be seen
that the same JT active degenerate vibrational modes also cause
pseudo-Jahn-Teller (PJT) type3,13–15 of coupling between
different electronic states. The totally symmetric a1 vibrational
modes, on the other hand, cannot lift the electronic degeneracy
and are Condon active.3 The impact of these four JT and PJT
active degenerate and four Condon active totally symmetric
vibrational modes in the vibronic dynamics of CF3CN+ in its
five low-lying electronic states is examined below.

The photoelectron spectrum of CF3CN has been recorded by
various experimental groups by using He I, He II, and
synchrotron radiation12,16 as ionization sources. These experi-
ments revealed different energy resolution and intensity of peaks
in the vibronic bands. The first two photoelectron bands in the
13.3-17.7 eV energy range revealed highly overlapping and
diffuse vibronic structures. They are attributed to the vibronic
structures of the energetically close-lying five lowest electronic
states of CF3CN+.12,16

Here, we attempt to develop a theoretical model in order to
examine the nuclear motion underlying the vibronic structures
of the mentioned photoelectron bands. It is clear from the
discussion above that various electronic coupling mechanisms
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need to be incorporated in the model to reach a satisfying
interpretation of the highly overlapping and complex structures
of the latter. Our theoretical model consists of five low-lying
(seven altogether when JT splitting is taken into consideration)
electronic states of CF3CN+ plus its 12 vibrational degrees of
freedom. The JT coupling within the X̃ and D̃ electronic states
and their PJT coupling with the Ã, B̃, and C̃ electronic states
are taken into consideration. The PJT coupling between the JT
split X̃ and D̃ electronic states are not considered, mainly because
they are vertically ∼3.32 eV apart and will be addressed in a
future publication. Whereas the JT coupling due to e vibrational
modes and the Condon activity due to a1 vibrational modes are
treated up to second order, the PJT coupling due to e vibrational
modes is treated with a linear coupling scheme.

Detailed ab initio electronic structure calculations are carried
out to derive the relevant coupling parameters of the vibronic
Hamiltonian. A time-independent matrix diagonalization ap-
proach to treat the nuclear dynamics on seven interacting
electronic states including 12 vibrational degrees of freedom is
computationally impracticable. This task is therefore accom-
plished with a time-dependent wave packet (WP) propagation
approach within the multiconfiguration time-dependent Hartree
(MCTDH) scheme.17–20 The MCTDH scheme has been very
successful particularly in treating the multistate and multimode
vibronic coupling problems of large dimensions. The details of
the MCTDH method is documented in a recent review article
by Beck et al.20 Although the final results of this paper are
obtained by this method, comparison calculations are carried
out in reduced dimensions by the time-independent matrix
diagonalization approach, in order to check the consistencies
of various results and also identify the detailed progressions in
the vibronic bands. A systematic treatment of the nuclear
dynamics revealed that PJT interactions among the first five
electronic states CF3CN+ play an important role in the nuclear
dynamics. The theoretical results are found to be in excellent
accord with the experimental data, revealing that the JT effect
is particularly weak in the X̃ state. This effect is relatively
stronger in the D̃ state. However, the PJT couplings between
the X̃-Ã and B̃-C̃-D̃ electronic states are primarily important
for the highly diffuse vibronic band shapes of the radical cation.

II. Equilibrium Structure and Normal Vibrational Modes
of the Electronic Ground-State of CF3CN

The electronic structure calculations of CF3CN are carried
out at the Møller-Plesset perturbation (MP2) level of theory and
by employing both cc-pVDZ as well as 6-311++g** basis sets

by using Gaussian-03 program package.21 The optimized
equilibrium geometry of its electronic ground state (X̃1A1)
belongs to the C3ν symmetry point group. The optimized
geometry parameters are rCF ) 1.33 Å, rCC ) 1.48 Å, rCN )
1.17 Å, ∠ F-C-F ) 108.54° and ∠ C-C-F ) 109.33°, in good
agreement with their experimental values,22 1.33 Å, 1.49 Å, 1.15
Å, 109.23°, and 109.74° respectively. Examination of occupied
canonical MOs reveals a configuration,... (3e)4(4e)4(5e)4(9a1)2-
(1a2)2(10a1)2(6e)4 for the electronic ground state of CF3CN. The
sequence of MOs above are in agreement with the results of
Shimizu et al.22 and differs with the results of Åsbrink et al.,23

and understandably the difference arises from the level of
quantum chemistry calculations that could be performed at that
time.

The highest occupied MO (HOMO) (6e), HOMO-1 (10a1),
HOMO-2 (1a2), HOMO-3 (9a1), and HOMO-4 (5e) are sche-
matically shown in Figure 1 of the Supporting Information.
According to Shimizu et al.,22 the characteristics of these MOs
are as follows: HOMO is C-N π bonding, HOMO-1 is mainly
the nitrogen lone pair, HOMO-2 is nonbonding and purely F
2p lone-pair, and HOMO-3 is delocalized over the entire
molecule and is bonding in nature. HOMO-4 is mostly F 2p
lone-pair but also reveals C-F bonding. The diagrams, shown
in Figure 1 of the Supporting Information, describe the nature
of these MOs illustrated above. These MOs are energetically
close lying. The Ã, B̃, C̃, and D̃ electronic states are vertically
∼0.50, ∼2.67, ∼2.84, and ∼3.32 eV above the X̃ state of
CF3CN+. The harmonic frequencies (ωi, i ) 1-12) of the
vibrational modes of the electronic ground state of CF3CN are
calculated by diagonalizing the MP2 force field and are given
in Table 1 along with their fundamental values available from
the experiment.24 Along with the frequencies, the mass weighted
normal coordinates are obtained, which are transformed into
their dimensionless form by multiplying with (ωj)1/2 (in atomic
units used here).25 These coordinates represent the normal
displacement coordinates (from their equilibrium value at Q )
0), referred here as Qi for the ith vibrational mode. The 12
vibrational modes are schematically shown in Figure 2 of the
Supporting Information, and their predominant nature is given
in Table 1.

III. Vibronic Coupling Model

Electronic structure and nuclear dynamics of CF3CN+ in its
coupled X̃-Ã-B̃-C̃-D̃ electronic states are examined here. As
mentioned above, these electronic states are energetically close
and are readily accessible upon photoionization of CF3CN and

TABLE 1: Symmetry, Frequency, and Description of the Normal Vibrational Modes of the Electronic Ground State of
Trifluoroacetonitrilea

vibrational frequency (ωi)/eV

mode MP2/6-311++G** experiment predominant nature coordinate

a1

ν1 0.2716 0.2821 C-N stretching Q1

ν2 0.1559 0.1521 C-C stretching Q2

ν3 0.1010 0.0994 CF3 bending Q3

ν4 0.0656 0.0647 umbrella bending Q4

e
ν5 0.1508 0.1505 C-F stretching Q5x Q5y

ν6 0.0779 0.0766 C-C-F scissoring Q6x Q6y

ν7 0.0583 0.0574 F-C-C twisting Q7x Q7y

ν8 0.0234 0.0243 C-C-N bending + F-C-F twisting Q8x Q8y

a The experimental results are reproduced from ref 24. Note that theoretical frequencies are harmonic, whereas experimental ones are
fundamental.
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give rise to highly overlapping vibronic bands. An analysis of
the structure of the latter requires the potential energies of these
electronic states and their interaction potentials along various
nuclear coordinates. The two degenerate (X̃ and D̃) electronic
states of CF3CN+ undergo a JT splitting upon displacement
along the degenerate vibrational modes. The latter modes by
symmetry can also cause PJT-type coupling between the two
degenerate states (which is not considered here and will be
addressed in a future publication) and also between the
degenerate and nondegenerate electronic states. The four totally
symmetric vibrational modes are Condon active within each
electronic state.3 In order to describe these couplings in the
vibronic Hamiltonian, we use a diabatic electronic basis,26,27 in
which they are represented in the electronic part and are
smoothly varying functions of nuclear coordinates. The Hamil-
tonian is written in terms of the dimensionless normal coordi-
nates of the vibrational modes of CF3CN as discussed above
and defined in Table 1, in conjunction with the stated symmetry
selection rules (eqs 1 and 2). Therefore, the Hamiltonian for
the coupled manifold of seven electronic states of CF3CN+ can
be written as

H )H017 +

(W1
X W12

X W1
X-A W1

X-B W1
X-C 0 0

W2
X W2

X-A W2
X-B W2

X-C 0 0

WA 0 0 W1
A-D W2

A-D

WB 0 W1
B-D W2

B-D

h.c. WC W1
C-D W2

C-D

W1
D W12

D

W2
D

) (3)

Here, H0 ) TN + V0 represents the Hamiltonian of the
unperturbed electronic ground state of CF3CN. Nuclear motions
in the latter are treated as harmonic with

TN )- 1
2∑i)1

4

ωi
∂

2

∂Qi
2
- 1

2∑i)5

8

ωi( ∂
2

∂Qix
2
+ ∂

2

∂Qiy
2 ) (4)

and

V0 )
1
2∑i)1

4

ωiQi
2 + 1

2∑i)5

8

ωi(Qix
2 +Qiy

2 ) (5)

The matrix Hamiltonian with elements W in eq 3 describes
the change in the electronic energy upon ionization from this
unperturbed electronic ground state and defines the details of
diabatic electronic PESs of CF3CN+.3 These elements are
expanded in a Taylor series around the equilibrium geometry
of CF3CN along each normal mode displacement coordinates.
By excluding various intermode coupling terms, the following
expansions are retained for these elements:

W1,2
X(D) )E0

X(D) +∑
i)1

4

κi
X(D)Qi (∑

i)5

8

λi
X(D)Qix +

1
2∑i)1

4

γi
X(D)Qi

2 +

1
2∑i)5

8

[γi
X(D)(Qix

2 +Qiy
2 )( ηi

X(D)(Qix
2 -Qiy

2 )]+ 1
6∑i)5

8

[δi
X(D)(-

6QixQiy
2 + 2Qix

3 )( µi
X(D)(Qix

3 +QixQiy
2 )]+ 1

24∑i)5

8

[�i
X(D)(Qix

2+

Qiy
2 )2(Ri

X(D)(Qix
4 - 6Qix

2 Qiy
2 +Qiy

4 )( 	i
X(D)(Qix

4 -Qiy
4 )] (6a)

W12
X(D) )∑

i)5

8

λi
X(D)Qiy -∑

i)5

8

ηi
X(D)QixQiy +

1
6∑i)5

8

µi
X(D)(Qix

2 Qiy +

Qiy
3 )+ 1

24∑i)5

8

[4Ri
X(D)QixQiy(Qix

2 -Qiy
2 )- 2	i

X(D)QixQiy(Qix
2 +

Qiy
2 )] (6b)

W1
X(D)-k )∑

i)5

8

λi
X(D)-kQix (6c)

W2
X(D)-k )-∑

i)5

8

λi
X(D)-kQiy (6d)

Wk )E0
k +∑

i)1

4

κi
kQi +

1
2∑i)1

4

γi
kQi

2 + 1
2∑i)5

8

γi
k(Qix

2 +Qiy
2 )+

1
24∑i)5

8

�i
k(Qix

4 +Qiy
4 ) k ∈ Ã, B̃, and C̃ (6e)

The quantity E0
j represents the vertical ionization potential

of the jth electronic state. The linear intrastate and JT coupling
parameters of the jth electronic state are denoted by κi

j and λi
j

for the symmetric and degenerate vibrational modes, respec-
tively. The linear PJT coupling parameters for the latter modes
between the electronic states j and k are represented by λi

j-k.
The diagonal second-order coupling parameters for the vibra-
tional modes are given by γi

j, and ηi
j represents the quadratic JT

coupling parameters for the degenerate vibrational modes. The
diagonal cubic and quartic28 coupling parameters for these
vibrational modes are given by δi

j and �i
j, whereas the corre-

sponding off-diagonal coupling parameters are given by µi
j, Ri

j,
and 	i

j. To calculate these coupling parameters, we perform direct
calculations of vertical ionization energies (VIEs) of CF3CN
by the outer valence Green’s function method29 by employing
the same basis sets as the one noted above. The VIEs are
calculated for Qi ) (0.10, (0.25 (0.25), ( 1.50, along the ith
vibrational mode, keeping others at their equilibrium value.
These VIEs are equated with the adiabatic potential energies
of CF3CN+ relative to the electronic ground state of CF3CN.
Subsequently, these energies are fitted to the adiabatic form of
the diabatic electronic Hamiltonian of eq 3 by using least-squares
algorithm, and thereby, the coupling parameters are obtained.
Because the latter represent the derivatives of various order in
the Taylor series expansion of the elements of the electronic
Hamiltonian of (eqs 6a and 6e), they are also estimated by
numerical finite difference schemes. The parameters that
represent the best agreement between the model and the ab initio
adiabatic potentials are given in Tables 2, 3, and 4.

IV. Dynamical Observables

The dynamical observables are reported in terms of vibronic
spectra and nonradiative decay of excited electronic states. The
spectral intensity, P(E), of the vibronic band is calculated by
the Fermi’s golden rule equation:

P(E))∑
υ

|〈Ψυ
f |T̂|Ψ0

i 〉 |2δ(E-Eυ
f +E0

i ) (7)

Here, |ΨV
f〉 represents the eigenstates of the vibronic Hamiltonian

of eq 3 with energy EV
f . |Ψ0

i 〉 is the initial ground vibronic state
of neutral CF3CN with energy E0

i . The quantity T̂ is the operator
that describes the interaction of valence electrons with the
external radiation. The quantity E is the difference of energy
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of the external radiation and the kinetic energy of the ejected
electron and therefore represents the electron binding energy
or the ionization energy. The initial vibronic state is assumed
to take the form

|Ψ0
i 〉 ) |Φ0 〉 |�0

0〉 (8)

with |Φ〉 and |�〉 representing the diabatic electronic and
vibrational components of the wave function, respectively. The
latter are taken to be the eigenfunction of the unperturbed
harmonic Hamiltonian, H0 (cf., eqs 4 and 5).

In a time-dependent picture, eq 7 for the spectral intensity
rearranges to a Fourier transform of the time autocorrelation
function of the WP27

P(E) ≈ 2Re∫0

∞
eiEt⁄p〈0|τ† e-iHt⁄p τ|0〉 dt (9)

≈2Re∫0

∞
eiEt⁄pCm(t) dt (10)

The quantity, Cm(t) ) 〈Ψm(0)|Ψm(t)〉, is the time autocorrelation
function of the WP initially prepared on mth electronic state. τ
refers to the transition dipole matrix; τ† ) (τX̃x, τX̃y, τÃ, τB̃, τC̃,
τD̃x, τD̃y), with, τm ) 〈ψm|T̂|ψ0〉. Note that the final wave function
possesses components on each of the vibronically coupled seven

diabatic electronic states (X̃x, X̃y, Ã, B̃, C̃, D̃x, and D̃y), and
therefore, the composite vibronic spectrum is to be written as a
weighted sum of the resulting seven partial spectra. The latter
are calculated by propagating WPs for seven different initial
conditions. The diabatic electronic populations are calculated
by following the change in the probability density (|ψ|2) of the
WP component on each electronic state in time. This yields
informations on the nonradiative decay of the excited electronic
states of CF3CN+.

V. Numerical Computations

The vibronic eigenvalue spectrum of the matrix Hamiltonian
H of eq 3 can be calculated either by a time-independent matrix
diagonalization or a time-dependent WP method. In the former
approach, the eigenvalue equation, H|ΨV〉 ) EV|ΨV〉 , is solved
by representing H in a complete direct product basis of diabatic
electronic states Φm and one-dimensional harmonic oscillator
eigenfunctions, |νi〉 (i ) 1-12), of H0. The vibronic Hamiltonian
expressed in this basis becomes a function of the occupation
number of various vibrational modes.3 The maximum level of
excitation for each mode is approximately estimated from its
excitation strength3

TABLE 2: Parameters of the Vibronic Hamiltonian for the Degenerate X̃2E Electronic State of CF3CN+, Derived from the Ab
Initio Electronic Structure Results (See Text for Details)a

mode κi or λi γi ηi �i φi µi Ri 	i

ν1 0.2779 0.0325
ν2 0.2890 -0.0165
ν3 -0.0669 0.0005
ν4 -0.0040 -0.0027
ν5 0.0109 -0.0100 -0.0032 -0.0080 -0.0060 -0.0008 -0.0003 -0.0002
ν6 0.0082 -0.0070 0.0037 -0.0040 -0.0025 0.0009 0.0005 0.0002
ν7 0.0093 -0.0085 -0.0013 -0.0063 -0.0040 0.0009 0.0004 0.0002
ν8 0.0092 -0.0082 -0.0004 -0.0065 -0.0061 -0.0003 -0.0002 -0.0002
E0

X 14.031

a The VIE of this electronic state (E0
X) is also given in the table. All quantities are in eV.

TABLE 3: Parameters of the Vibronic Hamiltonian for the Three Lowest Nondegenerate Ã2A1, B̃2A2, and C̃2A1 Electronic
States of CF3CN+, Derived from the Ab Initio Electronic Structure Results (See Text for Details)a

mode κi Ã/B̃/C̃ γi Ã/B̃/C̃ φi Ã/B̃/C̃

ν1 -0.0927/0.0515/-0.0915 -0.0081/-0.0033/-0.0163
ν2 0.2612/-0.1642/0.1685 -0.0271/-0.0110/-0.0229
ν3 -0.0326/0.0593/-0.0639 -0.0003/-0.0107/ 0.0065
ν4 0.0270/-0.0744/0.0907 -0.0006/ 0.0029/-0.0039
ν5 -0.0075/-0.0916/-0.0514 -0.0020/-0.0002/-0.0007
ν6 -0.0037/-0.0182/-0.0184 -0.0025/-0.0030/-0.0050
ν7 0.0022/-0.0280/-0.0077 0.0009/-0.0035/-0.0029
ν8 0.0066/-0.0048/-0.0080 0.0019/-0.0015/-0.0035
E0

A 14.529
E0

B 16.701
E0

C 16.872

a The VIEs of these three electronic states (E0
A, E0

B, E0
C) are also given in the table. All quantities are in eV.

TABLE 4: Same as in Table 2 for the Degenerate D̃2E Electronic State of CF3CN+

mode κi or λi γi ηi �i φi µi Ri 	i

ν1 0.0556 0.0033
ν2 -0.2526 0.0037
ν3 0.0231 -0.0098
ν4 -0.0945 -0.0075
ν5 0.1910 -0.0348 -0.0742 -0.0008 -0.0008 -0.0006 -0.0005 -0.0003
ν6 0.0428 0.0023 -0.0044 0.0009 0.0005 -0.0009 -0.0005 -0.0003
ν7 0.0614 -0.0026 -0.0020 -0.0006 -0.0004 -0.0007 -0.0004 -0.0002
ν8 0.0014 -0.0010 0.0008 0.0007 0.0005 0.0005 0.0004 0.0001
E0

D 17.350
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[1
2(κ or λ

ω )2]
One usually obtains a highly sparse Hamiltonian matrix in such
a direct product basis. It is then tridiagonalized by using the
Lanczos algorithm prior to diagonalization.30 The diagonal
elements of the resulting eigenvalue matrix give the energies
of the vibronic energy levels, and the relative intensities of the
vibronic lines are calculated from the squared first components
of the Lanczos eigenvectors.31

In the time-dependent approach, a suitable WP is propagated
in the final electronic state by solving the eigenvalue equation,
ip∂t|ΨV〉 ) H|ΨV〉 . The autocorrelation function, Cm(t), of the
WP is recorded in time and Fourier transformed to generate
the vibronic eigenvalue spectrum. The time-independent matrix
diagonalization approach often becomes unsuitable for multistate
and multimode problems (such as the present example) because
of very large computer hardware requirements. The WP
propagation within the MCTDH scheme has emerged as a very
promising alternative tool to deal with such situations.17–20 The
efficiency of this algorithm lies in its multiset ansatz, which
allows a combination of several vibrational degrees of freedom
to effectively reduce the dimensionality problem. By applying
this ansatz, the wave function for the present nonadiabatic
problem can be expressed as20

Ψ(Q1, Q2, ..., Qf, t))Ψ(q1, q2, ..., qp, t)

) ∑
R)1

7

∑
j1)1

n1
(R)

...∑
jp)1

np
(R)

Aj1...jp

(R) (t)∏
k)1

p

φjk

(R,k)(qk, t)|R〉 (11)

)∑
R

∑
J

AJ
(R)ΦJ

(R)|R〉 (12)

where f and p represent the number of vibrational degrees of
freedom and particles defining combined vibrational modes,
respectively. Aj1...jp

(R) denote the MCTDH expansion coefficients,
and {φjk

(R,k)} are the one-dimensional expansion functions, known
as single particle functions (SPFs). The labels {R} are indices
denoting the discrete set of electronic states considered in the
calculation. Thus, the WP, Ψ(R) () ∑JAJ

(R)ΦJ
(R)), associated with

each electronic state is described by using a different set of SPFs,
{φjk

(R,k)} . Here the multi-index, J ) j1...jp depends implicitly on
the state R because the maximum number of SPFs may differ
for different states. The summation ∑J is a shorthand notation
for summation over all possible index combinations for the
relevant electronic state. The variables for the p sets of SPFs
are defined in terms of one or multidimensional coordinates of
a particle. The operational principles of the MCTDH algorithm
are discussed in detail in the literature,20 and we do not reiterate
them here.

To solve the time-dependent Schrödinger equation by em-
ploying the MCTDH algorithm, one needs to choose a set of
harmonic oscillator discrete variable representation function, as
a primitive basis. The SPFs, their time derivatives, and the
Hamiltonian are then represented in this basis at each point in
time.20 A combination scheme for the twelve vibrational degrees
of freedom of CF3CN is then set up to reduce the computational
requirements, and finally, a set of SPFs is specified in order to
accurately represent the evolving WP. The initial SPFs used
are sets of ortho-normalized harmonic oscillator functions in
the mass-frequency scaled coordinates used. In the multiset
formalism, one set is required for each particle for each
electronic state.20 The initial wave function is the vibrational
wave function of CF3CN of its ground electronic state, which
is simply expressed as a product of the first SPFs in each set

and assumes the form of a Gaussian WP. The various mode
combination schemes, the sizes of the primitive, and SPF bases
used in the present calculations are given in Table 1 of the
Supporting Information.

VI. Adiabatic PESs

The adiabatic PESs of the lowest five electronic states are
obtained by diagonalizing the diabatic electronic Hamiltonian
matrix given in eqs 3–6 by using the parameters of Tables 2, 3,
and 4. One-dimensional cuts of these multidimensional PESs
along the dimensionless normal coordinate of each vibrational
mode are shown in Figures 1 and 2. In each plot, the points
represent the adiabatic potential energies computed ab initio,
and the curves superimposed on them represent those obtained
by the present vibronic model of Section III. In Figure 1a-d,
the potential energies of X̃, Ã, B̃, C̃, and D̃ electronic states
(indicated in the panel) are plotted along the symmetric
vibrational modes ν1-ν4, respectively. It can be seen that the
model reproduces ab initio data extremely well. The degeneracy
of the X̃ and D̃ states remains unperturbed on distortion along
these symmetric vibrational modes. Although the crossing of
the X̃ state with the others seems not very important (except
with the Ã state; panel a), the crossings of the D̃ state with B̃
and C̃ electronic states appear to have crucial role in shaping
up the details structure of the second vibronic band. The
participating electronic states in the latter are energetically close,
and the curve crossings seen in the diagram would lead to
multiple low-lying energetically accessible conical intersections
among them. The locus of degeneracy of the two components
of the X̃ and also D̃ electronic states define the seam of the JT
conical intersections within these states, occurring at the C3V
symmetry configuration of CF3CN+. In a second-order coupling
approach, the energetic minimum of these seams are given by

Vmin,X(D)
(c) )E0

X(D) - 1
2∑i)1

4 (κi
X(D))2

(ωi + γi
X(D))

(13)

With the parameters of Tables 2–4, these minima occur at, Vmin, X
(c)

≈ 13.58 eV and Vmin, D
(c) ≈ 17.06 eV.

The electronic degeneracy of the X̃ and D̃ states is split on
distortion along the degenerate vibrational modes ν5-ν8, and
this splitting leads to a total of seven states altogether in the
X̃-Ã-B̃-C̃-D̃ electronic manifold. The potential energies of
the X̃, Ã, B̃, C̃, and D̃ electronic states of CF3CN+ are shown in
Figure 2a-d along the x component of the degenerate vibrational
modes ν5-ν8, respectively. The symmetry rule forbids the first-
order coupling due to these vibrational modes in the nonde-
generate Ã, B̃, and C̃ electronic states. However, these modes
are JT active in first order in the X̃ and D̃ states. It can be seen
from Figure 2 that the JT splitting is very small in the X̃ state
along all the degenerate vibrational modes; in contrast, signifi-
cant splitting can be observed along ν5, ν6, and ν7 vibrational
modes in the D̃ state. As before, the points on the diagram are
the computed adiabatic energies, and the curves superimposed
on them represent the fit to the present theoretical model.
Moreover, the quartic terms of the Taylor expansion (eqs 6a–6e)
seem to have a significant role in representing the potential
energies of the X̃ state, particularly along the vibrational mode
ν8. The seams of JT conical intersections in the X̃ and D̃
electronic states occur in the coordinate space of a1 vibrational
modes. The energetic minimum of these seams becomes critical
point on the surface upon JT distortion. New minimum on the
lower adiabatic sheets of the JT split X̃ and D̃ elecronic states
occurs at ∼13.57 and ∼16.58 eV, respectively. Therefore, the
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JT stabilization energies amount to ∼4.6 × 10-3 and ∼0.48
eV for the X̃ and D̃ states, respectively.

Approximate estimates of the energetic minimum of various
PJT crossing seams are as follows. The minimum of the seam
of X̃-Ã conical intersections occurs ∼0.43 eV above the
minimum of the JT conical intersections in the X̃ state. The
minimum of the X̃-B̃ and X̃-C̃ conical intersections occurs
∼2.02 and ∼1.81 eV above the latter, respectively. The
minimum of the D̃-Ã, D̃-B̃, and D̃-C̃ conical intersections,
on the other hand, occurs at ∼0.5 and ∼0.27 eV below and
∼0.04 eV above the minimum of the JT conical intersections
in the D̃ state, respectively. All these critical points of the PESs
occur well within the energy range of the first two photoelectron
bands studied here.

VII. Vibronic Energy Levels

Vibronic energy levels of the X̃2E, Ã2A1, B̃2A2, C̃2A1, and D̃2E
electronic states of CF3CN+ are shown and discussed in this
section. These are calculated by the quantum mechanical
methods described above by using the parameters of Tables 2–4.
To start with, let us first examine the energy levels of each of
these electronic states by excluding the PJT coupling with their
neighbors and using a second-order model Hamiltonian. The
final theoretical results of this paper are, however, obtained by
including all couplings as described in the Hamiltonian of eq
3) and propagating WPs by using the MCTDH algorithm.17–20

In the following, we start with various reduced dimensional
models and systematical approach to carry out the final
simulation of nuclear dynamics by using the seven electronic
states and 12 vibrational modes.

In the uncoupled states situation and in the absence of any
intermode coupling terms, the Hamiltonian for the X̃ and D̃ states
are separable in terms of the a1 and e vibrational modes. One
can therefore calculate partial spectra separately for the a1 and
e vibrational modes and convolute them to generate the complete
spectrum, for these degenerate electronic states. Such a separa-
tion reduces the dimension of the secular matrix and facilitates
the numerical computation. The vibronic energy level spectrum

Figure 1. Adiabatic potential energies of the lowest five electronic states of CF3CN+ along the dimensionless normal coordinates of its four totally
symmetric vibrational modes ν1-ν4. The potential energies obtained from the present vibronic model are shown by solid lines, and the computed
ab initio data, superimposed on them, are shown by the points.

Figure 2. Same as in Figure 1, along the dimensionless normal
coordinates of the x component of the degenerate vibrational modes
ν5-ν8.
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of the X̃ electronic manifold is shown in Figure 3. The two
partial spectra of the a1 and e vibrational modes are shown in
panels a and b, respectively. The results of convolution of the
two partial spectra are shown in panel c. The vibronic energy
eigenvalues are obtained by diagonalizing the Hamiltonian
matrix by using the Lanczos algorithm and are shown as the
stick lines in the figure. The envelopes are obtained by
convoluting these stick lines with a Lorentzian function with a
full width at the half-maximum (fwhm) of 20 meV. Further
details of the calculations are given in Table 1 of the Supporting
Information. The partial spectrum of the e vibrational modes
(panel b) is essentially structureless because of their very weak
JT coupling in the state (cf., Table 2 and Figure 2). The a1

vibrational modes (panel a), ν1, ν2, and ν3 form progressions,
and peaks are ∼0.302, ∼0.138, and ∼ 0.101 eV spaced in
energy corresponding to the vibrational frequencies of these
modes (cf., Table 1), respectively. The vibrational mode ν2

forms the dominant progression in the band. Fundamental
transition due to ν7 and ν8 vibrational modes are observed in

the partial spectrum for the degenerate vibrational modes (panel
b). Lines are ∼0.049 and ∼0.015 eV spaced in energy and
correspond to the frequency of the ν7 and ν8 vibrational modes,
respectively. Similar spectra for the JT split D̃2E electronic
manifold of CF3CN+ are shown in Figure 4a-c. In contrast to
the X̃ state spectrum (cf. Figure 3a), the symmetric mode
spectrum for this state (panel a) reveals dominant excitations
of the ν2 and ν4 vibrational modes. The dominant lines are
∼0.058 and ∼0.154 eV spaced relative to the band origin and
correspond to the frequency of the ν4 and ν2 vibrational modes
in the D̃ electronic state, respectively. The excitation of the ν1

and ν3 vibrational modes in this case are found to be much
weaker compared to that in the X̃ state. The spectrum for the
JT active vibrational modes (panel b) clearly reveals that the
JT effect is much stronger in this electronic manifold. Excitations
due to the degenerate ν5, ν6, and ν7 vibrational modes can be
found in this case. The irregular spacings of lines in the spectrum
result from the multimode JT interactions. The composite
vibronic spectrum shown in panel c turned out to be very diffuse
because of much increase in the spectral line density arising
from relatively stronger JT coupling due to the degenerate
vibrational modes in the D̃ state.

The three nondegenerate electronic states (Ã, B̃, and C̃) of
CF3CN+ lie (vertically) in between the two degenerate electronic
states (X̃ and D̃). The vibronic band structures of the latter
electronic states shown above in Figures 3 and 4 differ
significantly from the experimental results (presented later in
Figure 6). Therefore, it seems necessary to consider their
possible PJT interactions with these three nondegenerate

Figure 3. Vibronic energy levels of the X̃2E electronic manifold of
CF3CN+: (a) partial spectrum computed with the four totally symmetric
a1 vibrational modes ν1-ν4, (b) partial spectrum computed with the
four JT active degenerate e vibrational modes ν5-ν8, and (c) composite
theoretical spectrum obtained by convoluting the above partial spectra.
The relative intensity (in arbitrary units) is plotted as a function of the
energy of the final vibronic state. The zero of energy corresponds to
the equilibrium minimum of the electronic ground state of CF3CN. The
theoretical stick spectrum in each panel is convoluted with a Lorentzian
function of 20 meV fwhm to generate the spectral envelope. The stick
spectrum of panel c is multiplied by a factor of 3 for a better clarity.

Figure 4. Same as Figure 3, D̃2E for the electronic manifold of
CF3CN+.
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electronic states to account for the detail fine structure of the
first two photoelectron bands of CF3CN. The vibronic energy
level spectrum of these nondegenerate electronic states without
including the coupling with their neighbors are shown in Figure
5a-c. The vibronic structure of the uncoupled Ã2A1 electronic
state (panel a) reveals dominant excitation of the ν2 vibrational
mode up to its seventh overtone. The other three symmetric
vibrational modes are very weakly excited in this band. The
vibronic structure of the B̃2A2 (panel b) and C̃2A1 (panel c)
electronic states, on the other hand, reveals dominant excitations
of ν2 and ν4 vibrational modes. Relatively diffuse structure of
the band in panel b compared to that in panel a and c is caused
by the relatively large second order coupling of the degenerate
vibrational modes in the B̃ sate (cf. Table 3).

So far, we did not consider the PJT coupling of various
electronic states in the numerical calculations. On inclusion of
this coupling, the separation of the Hamiltonian in terms of the
symmetric and degenerate vibrational modes for the degenerate
electronic states as explored above is no longer possible. It is
therefore necessary to follow the nuclear dynamics simulta-
neously on seven coupled electronic states (four from the two
JT split X̃ and D̃ states plus three nondegenerate Ã, B̃, and C̃
electronic states) including all relevant vibrational degrees of
freedom. Computationally, it turns out to be a daunting task to
simulate the nuclear dynamics quantum mechanically by the
matrix diagonalization approach employed above. We therefore
resort to the promising MCTDH algorithm17–20 and propagate
WPs on seven coupled electronic states including all 12
vibrational degrees of freedom in order to arrive at our goal.
The 12 vibrational degrees of freedom are grouped into four
three-dimensional particles. The combination scheme of the

vibrational modes is given in Table 2 of the Supporting
Information, along with the sizes of the primitive and SPF bases.
The parameters documented there are optimally chosen to ensure
the numerical convergence of the vibronic bands shown below.
The WP in each calculation is propagated for 200 fs which
effectively yields results for 400 fs propagation.32

Figure 6 displays in comparison the experimental and presents
theoretical photoelectron bands of CF3CN in the energy range
13-18 eV, resulting from ionization from the five valence type
MOs of CF3CN (cf. Figure 1 of the Supporting Information).
The theoretical results are shown in panels b and c along with
the experimental He I and He II results in panel a.12 The
theoretical results of panel b are obtained by superimposing the
spectra shown in Figures (3–5) without considering the PJT
interactions among the states. The results shown in panel c are
obtained by including all coupling terms as given in the
Hamiltonian of eqs 3–6 and propagating WPs by employing
the MCTDH scheme.17–20 Details of the MCTDH calculations
are given in Table 2 of the Supporting Information. Seven WP
propagations in the coupled X̃-Ã-B̃-C̃-D̃ electronic manifold

Figure 5. Same as Figure 3, for the nondegenerate Ã2A1(panel a), B̃2A2

(panel b), and C̃2A1 (panel c) electronic states of CF3CN+.
Figure 6. Comparison of the present theoretical and experimental
photoelectron bands of CF3CN: (a) He I and He II experimental
spectrum,12 (b) composite theoretical spectrum employing a full second-
order Hamiltonian and without considering the PJT coupling (the stick
vibronic spectrum is multiplied by a factor 4 for clear representation),
and (c) final theoretical results obtained by including all couplings
described in the Hamiltonian of eqs 3–6e. The theoretical spectral
envelopes in panels b and c correspond to a Lorentzian line shape
function with 40 meV fwhm. The vibronic stick eigenvalue spectrum
obtained by diagonalizing the X̃2E-Ã2A1 block of the Hamiltonian is
shown in the inset of panel b (see text for details). The spectral envelop
in it corresponds to a Lorentzian function with 40 meV fwhm. The
stick vibronic spectrum is multiplied by a factor of 2.5. The magnified
version of the experimental He I band is also included on top of the
theoretical results of panel c for a better clarity.
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are carried out by initially preparing the WP separately on each
of the component state of this manifold. Finally, results from
these seven calculations are combined with appropriate statistical
weights. The resulting time autocorrelation function is damped
with a relaxation time of 33 fs (which corresponds to a 40 meV
fwhm Lorentzian function) before Fourier transformation to
generate the spectral envelopes of panel c. The stick spectrum
of panel b is also convoluted with a 40 meV fwhm Lorentzian
function to obtain the corresponding spectral envelope. A
comparison of the theoretical results of panels b and c with the
experimental one in panel a immediately reveals the strong
impact of PJT interactions in the fine structure of the vibronic
bands. For clarity, the experimental He I bands in magnified
form are included on top of the theoretical bands of panel c.
The JT couplings within the X̃ state and its PJT coupling with
the Ã state primarily contribute to the vibronic structure of the
first band. The JT coupling within the D̃ state plus the B̃-C̃-D̃
PJT couplings, on the other hand, yields the irregular and highly
overlapping structure of the second band. The theoretical results
of panel c are in good accord with the experimental, particularly
with the He II, data.

The foregoing discussions reveal that in practice, the seven
coupled electronic states Hamiltonian assumes a block diagonal
structure; hence, the final results can be obtained by solving
the eigenvalue equations separately for each block. These blocks
consist of X̃-Ã and B̃-C̃-D̃ coupled electronic states. We
attempted to diagonalize each of these two blocks of the
Hamiltonian matrix separately. Although a nearly converged
stick eigenvalue spectrum could be obtained for the X̃-Ã block,
we miserably failed (because of large computer hardware
requirements) to get a presentable structure of the vibronic
eigenvalue spectrum for the B̃-C̃-D̃ block. The nearly
converged vibronic level spectrum of the X̃-Ã coupled elec-
tronic states is included as an inset in panel b of Figure 6. The
precise location of the adiabatic ionization positions of the seven
states of CF3CN+ are not reported in the experimental investiga-
tions.12 However, the onset of the experimental band is found
at ∼13.6 eV; we adjusted our theoretical result of the band origin
to the latter value. It was necessary to decrease the VIE of the
X̃ state by ∼0.2 eV (from its ab initio value reported in Table
3) to obtain the experimentally observed maximum of the X̃-Ã
band at ∼14.3 eV. We note that apart from this, no other
adjustments of parameters (reported in various tables in this
paper) are made. Precise quantitative information on the vibronic
energy levels could not be extracted from the poorly resolved
experimental spectra;12,16 however, our estimates show that the
dominant progressions in the X̃-Ã band is caused by the
vibrational mode ν2: the peaks are ∼0.144 eV apart compared
to the experimental (rough) estimate of ∼0.136 eV. Similarly,
the dominant progression in the B̃-C̃-D̃ electronic states caused
by the vibrational mode ν2 and the peaks are ∼0.154 eV apart
compared to the estimated experimental value of ∼0.140 eV.

To this end, it is worthwhile to discuss the above results in
relation to those found for CH3CN+.33 Substitution of F atom
results into the appearance of many energetically close-lying
electronic states arising from ionization from MOs of CF3CN
with predominant F lone-pair orbital character. The nature of
HOMO and HOMO-1 of both CH3CN33 and CF3CN is similar,
describing predominantly C-N π bonding and N lone-pair
orbitals, respectively. However, HOMO-2, HOMO-3, and
HOMO-4 (cf. Figure 1 of the Supporting Information) of CF3CN
reveal major contributions from the lone-pair orbitals of F atom
and are closely spaced in energy. This results in the highly
overlapping nature of the second photoelectron band of CF3CN.

As discussed above the first band in the photoelectron
spectrum of CF3CN (cf. Figure 6) describes the vibronic
structure of the X̃-Ã coupled electronic states of CF3CN+. Low-
energy conical intersections between the X̃-Ã states are obtained
along the symmetric vibrational mode of C-N stretching type.
Although such conical intersections are located very near to
the equilibrium geometries of these states for CF3CN+ (cf. panel
a of Figure 1), they are located far away from the equilibrium
geometries of these states for CH3CN+.33 The JT interactions
are weak in the X̃ state, in both CH3CN+ and CF3CN+. However,
the X̃-Ã PJT coupling is far stronger in CF3CN+, particularly
along ν8, compared to that in CH3CN+.33 The harmonic
frequency of this mode also reduces by a factor of 2 in CF3CN+.
In summary, the far stronger PJT coupling leads to the highly
diffuse vibronic structure of the first photoelectron band of
CF3CN+ when compared to the same band of CH3CN +.33

Although He I and He II experimental results for the first
band of CF3CN+ (cf. panel a of Figure 6) reveal no differences
in the spectral intensities, the latter for the second band reveal
dramatic differences. This bears the signature of ionization from
MOs localized mainly on the CF3 group, and this band appears
well within the fingerprint region (15.0-17.5 eV) of CF3

ionization.34,35 The JT interactions in the D̃ electronic state have
been shown to be much stronger than in the X̃ state. In addition,
the PJT couplings between Ã-D̃ (through ν6), B̃-D̃ (through
ν5, ν6, and ν7) and C̃-D̃ (through ν5, ν6, and ν7) electronic states
contribute substantially to the observed highly diffuse structure
of this vibronic band.

VIII. Nonadiabatic Transitions: Time-Dependent
Dynamics

In order to examine nonadiabatic transitions in the
X̃-Ã-B̃-C̃-D̃ coupled electronic manifold and nonadiabatic
decay of electronically excited states of CF3CN+, we recorded
the time-dependence of the diabatic electronic populations for
an initial transition to each of the above electronic states
separately. The results are shown in Figure 7a-e. In panel a,
the population dynamics is shown for an initial transition of
the WP to one of the two JT split components of the X̃ state.
The decay and growth of population of these components and
the growth of the Ã state population can be seen from the
diagram. The population of the B̃-C̃-D̃ electronic states shows
only minor variations in this case. It is therefore clear that the
electronic nonadiabatic dynamics in this situation is predomi-
nantly governed by the JT coupling within the X̃ state and its
PJT coupling with the Ã state. The PJT conical intersections
with the other electronic states occur at higher energies and
remain inaccessible to the WP in this case. The initial decay of
the population of the X̃ state relates to a decay rate of ∼52 fs.
It can be seen from panel a that the WP mostly undergoes
nonadiabatic transitions back and forth between the two JT split
components of the X̃ state. This is because the minimum of the
X̃-Ã conical intersections occurs ∼0.43 eV above the minimum
of the JT conical intersections within the X̃ state.

The population dynamics changes dramatically when the WP
is initially prepared on the Ã state, as shown in panel b. The
X̃-Ã PJT conical intersections are readily accessible to the WP
packet in this case, and therefore, the population of the Ã state
decays at the much faster rate of ∼22 fs. It can be seen that the
decay of the Ã state population mainly (“only”) contributes to
the growth of the population of the two components of the X̃
state. This reflects that the coupling of the Ã state with B̃, C̃,
and D̃ electronic states is not very significant (cf. Table 4).

The nonadiabatic transition dynamics of the WP initially
prepared on the B̃ and C̃ states are shown in panels c and d,
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respectively. In these cases, the transitions take place primarily
within the B̃-C̃-D̃ electronic states only. The states within the
X̃-Ã electronic manifold mostly remain unpopulated during the
dynamics. The decay rates of the B̃ and C̃ electronic states are
estimated to be ∼32 and ∼125 fs, respectively, and are slower
compared to that of the Ã state.

Finally, the electronic population dynamics for an initial
transition of the WP to one component of the JT split D̃ state
is shown in panel e. It can be seen that the D̃ state decays at a
much faster rate, ∼21 fs, compared to the X̃ state. This is due
to the relatively stronger JT coupling within the D̃ state and
also to the energetically close locations of the JT and B̃-D̃ and
C̃-D̃PJT conical intersections. Only minor population transfer
takes place to the X̃-Ã coupled electronic manifold in this case
also.

IX. Summary and Outlook

A detailed theoretical account of the multimode JT and PJT
interactions in the five lowest electronic states of CF3CN+ have
been presented here to elucidate highly complex vibronic
structure of the first two photoelectron bands of CF3CN.
Extensive ab initio electronic structure calculations are per-
formed to develop a vibronic coupling model (eqs 3–6e), and
first-principles calculations are carried out both via time-
independent and time-dependent quantal methods to simulate
the nonadiabatic nuclear motion on the coupled manifold of

these electronic states. The theoretical results are found to be
in good accord with the available experimental results.

The vibronic Hamiltonian is constructed in a diabatic
electronic basis, including the JT coupling within the degenerate
X̃ and D̃ electronic states and the PJT couplings of these JT
split states with the nondegenerate Ã, B̃, and C̃ electronic states
of CF3CN+. The coupling parameters of the vibronic Hamil-
tonian are determined by calculating the adiabatic PESs of the
X̃2E, Ã2A1, B̃2A2, C̃2A1, and D̃2E electronic states along each of
the twelve vibrational modes.

The vibronic energy level structure of these electronic states
of CF3CN+ are systematically examined at various level of
theoretical approximations calculated by the time-independent
matrix diagonalization approach. The final theoretical simula-
tions using the full Hamiltonian of eqs 3–6e can only be carried
out by propagating WPs by employing the MCTDH algo-
rithm.17–20 A careful examination of various theoretical results
enabled us to arrive at the following conclusions. The symmetric
vibrational modes ν1 and ν2 are crucial and are strongly excited.
Whereas the former leads to low-energy crossings of the X̃-Ã
electronic states, the latter and ν4 are both important for the
low-energy crossings of B̃-C̃-D̃ electronic states. The JT
effects in the X̃ electronic states is far weaker compared to that
in the D̃ state. The JT stabilization energy of ∼4.6 × 10-3 and
∼0.48 eV are estimated, respectively, for these electronic states.
The JT and PJT interactions of the X̃-Ã electronic states mostly
contribute to the overall vibronic structure of the first photo-
electron band. The PJT coupling due to ν8 vibrational mode is
found to be the strongest, and the vibrational modes ν2, ν7, and
ν8 are found to make the progressions in this band. Energetically
close-lying B̃-C̃-D̃ electronic states are found to be responsible
for the highly overlapping structure of the second photoelectron
band. The relatively stronger JT coupling within the D̃ electronic
state and appreciable PJT coupling due to ν5 and ν6 vibrational
modes among these electronic states contributes to the diffuse
vibronic structure of this band. The vibrational modes ν2, ν4,
ν5, and ν7 form the major progressions in this band.
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